Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 447: 138942, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38484542

RESUMO

The development of a sustainable and efficient bioconversion strategy is crucial for the full-component utilization of naringin. In this study, an engineering Pichia pastoris co-culture system was developed to produce L-rhamnose and 2S/2R-naringenin. By optimizing transformation conditions, the co-culture system could completely convert naringin while fully consuming glucose. The production of 2S/2R-naringenin reached 59.5 mM with a molar conversion of 99.2%, and L-rhamnose reached 59.1 mM with a molar conversion of 98.5%. In addition, an engineering Escherichia coli co-culture system was developed to produce 2R-naringenin and kaempferol from 2S/2R-naringenin. Maximal kaempferol production reached 1050 mg/L with a corresponding molar conversion of 99.0%, and 996 mg/L 2R-naringenin was accumulated. Finally, a total of 17.4 g 2R-naringenin, 18.0 g kaempferol, and 26.1 g L-rhamnose were prepared from 100 g naringin. Thus, this study provides a novel strategy for the production of value-added compounds from naringin with an environmentally safe process.


Assuntos
Flavanonas , Ramnose , Quempferóis
2.
Artigo em Inglês | MEDLINE | ID: mdl-38386145

RESUMO

Yeast extract serves as a source of nutritional components essential for human dietary requirements, feed formulations, and the vital growth factors and nutrients necessary for microorganisms. However, the production cost of yeast extract using cultivated active dry yeast is relatively high. This study aims to utilize the autolysis of discarded yeast post beer brewing to produce yeast extract. The concentration, temperature, pH, and time conditions are systematically optimized. It reveals that the yield of amino nitrogen and solids in the extract was increased by 3.3% and 20.9% under the optimized conditions (1.2% wall-breaking enzyme, 1% yeast extract enzyme, and a hydrolysis time of 24 h) than that of the documented 4.03% and 69.05%. Additionally, a comparative analysis with commercially available yeast powder demonstrates that the yeast extract derived from this study adequately fulfills the nutritional requirements for microbial growth. Hence, the utilization of discarded beer yeast presents an opportunity for the valuable reclamation of waste yeast, showcasing promising potential applications.

3.
Bioorg Chem ; 145: 107183, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340474

RESUMO

Prenyltransferases catalyze the synthesis of prenylated flavonoids, providing these with greater lipid solubility, biological activity, and availability. In this study, a thermostable prenyltransferase (AfPT) from Aspergillus fumigatiaffinis was cloned and expressed in Escherichia coli. By optimizing induction conditions, the expression level of AfPT reached 39.3 mU/mL, which was approximately 200 % of that before optimization. Additionally, we determined the enzymatic properties of AfPT. Subsequently, AfPT was immobilized on carboxymethyl cellulose magnetic nanoparticles (CMN) at a maximum load of 0.6 mg/mg. Optimal activity of CMN-AfPT was achieved at pH 8.0 and 55 °C. Thermostability assays showed that the residual activity of CMN-AfPT was greater than 50 % after incubation at 55 °C for 4 h. Km and Vmax of CMN-AfPT for naringenin were 0.082 mM and 5.57 nmol/min/mg, respectively. The Kcat/Km ratio of CMN-AfPT was higher than that of AfPT. Residual prenyltransferase activity of CMN-AfPT remained higher than 70 % even after 30 days of storage. Further, CMN-AfPT retained 68 % of its original activity after 10 cycles of reuse. Compared with free AfPT, CMN-AfPT showed higher catalytic efficiency, thermostability, metal ion tolerance, substrate affinity, storage stability, and reusability. Our study presents a thermostable prenyltransferase and its immobilized form for the production of prenylated flavonoids in vitro.


Assuntos
Aspergillus , Dimetilaliltranstransferase , Flavanonas , Dimetilaliltranstransferase/genética , Dimetilaliltranstransferase/metabolismo , Flavanonas/farmacologia , Flavonoides/química , Concentração de Íons de Hidrogênio , Enzimas Imobilizadas/química , Estabilidade Enzimática , Temperatura
4.
J Agric Food Chem ; 72(6): 3066-3076, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38294193

RESUMO

Dihydro-ß-ionone is a common type of ionone used in the flavor and fragrance industries because of its characteristic scent. The production of flavors in microbial cell factories offers a sustainable and environmentally friendly approach to accessing them, independent of extraction from natural sources. However, the native pathway of dihydro-ß-ionone remains unclear, hindering heterologous biosynthesis in microbial hosts. Herein, we devised a microbial platform for de novo syntheses of dihydro-ß-ionone from a simple carbon source with glycerol. The complete dihydro-ß-ionone pathway was reconstructed in Escherichia coli with multiple metabolic engineering strategies to generate a strain capable of producing 8 mg/L of dihydro-ß-ionone, although this was accompanied by a surplus precursor ß-ionone in culture. To overcome this issue, Saccharomyces cerevisiae was identified as having a conversion rate for transforming ß-ionone to dihydro-ß-ionone that was higher than that of E. coli via whole-cell catalysis. Consequently, the titer of dihydro-ß-ionone was increased using the E. coli-S. cerevisiae coculture to 27 mg/L. Our study offers an efficient platform for biobased dihydro-ß-ionone production and extends coculture engineering to overproducing target molecules in extended metabolic pathways.


Assuntos
Norisoprenoides , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Norisoprenoides/metabolismo , Engenharia Metabólica , Técnicas de Cocultura , Escherichia coli/genética , Escherichia coli/metabolismo
5.
J Agric Food Chem ; 72(1): 475-482, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38116649

RESUMO

Glycosylation, one of the most common and significant modifications in nature, has prompted the development of a cellobiose phosphorolysis route for glycosylation in vivo. However, the process of glycosylation is hampered by the notably low conversion rate of cellobiose. In this work, regulation of the carbon source supply by changing the ratio of glucose to cellobiose improved the conversion rate of cellobiose, resulting in enhancing the efficiency of glycosylation and the production of vitexin. Moreover, three genes (pgm, agp, and ushA) involved in the degradation of UDP-glucose were knocked out to relieve the degradation and diversion of the cellobiose phosphorolysis route. Finally, through the optimization of conversion conditions, we observed a continuous enhancement in cellobiose conversion rate and vitexin production in BL21ΔushAΔagp-TcCGT-CepA, corresponding to an increased concentration of added glucose. The maximum production of vitexin reached 2228 mg/L with the addition of 2 g/L cellobiose and 6 g/L glucose, which was 312% of that in BL21-TcCGT-CepA with the addition of 2 g/L cellobiose. The conversion rate of cellobiose in BL21ΔushAΔagp-TcCGT-CepA reached 88%, which was the highest conversion rate of cellobiose to date. Therefore, this study presents a cost-effective and efficient method to enhance the conversion rate of cellobiose during the glycosylation process.


Assuntos
Carbono , Celobiose , Celobiose/metabolismo , Glicosilação , Glucose , Redes e Vias Metabólicas
6.
Bioprocess Biosyst Eng ; 46(9): 1251-1264, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37322185

RESUMO

C-glycosylflavonoids have a number of pharmacological activities. An efficient method for the preparation of C-glycosylflavonoids is through metabolic engineering. Thus, it is important to prevent the degradation of C-glycosylflavonoids for producing C-glycosylflavonoids in the recombinant strain. In this study, two critical factors for the degradation of C-glycosylflavonoids were clarified. The quercetinase (YhhW) gene from Escherichia coli BL21(DE3) was expressed, purified, and characterized. YhhW effectively degraded quercetin 8-C-glucoside, orientin, and isoorientin, while the degradation of vitexin and isovitexin was not significant. Zn2+ can significantly reduce the degradation of C-glycosylflavonoids by inhibiting the activity of YhhW. pH was another key factor causing the degradation of C-glycosylflavonoids, and C-glycosylflavonoids were significantly degraded with pH exceeding 7.5 in vitro or in vivo. On this basis, two strategies, deleting YhhW gene from the genome of E. coli and regulating pH during the bioconversion, were developed to relieve the degradation of C-glycosylflavonoids. Finally, the total degradation rates for orientin and quercetin 8-C-glucoside decreased from 100 to 28% and 65% to 18%, respectively. The maximum yield of orientin reached 3353 mg/L with luteolin as substrate, and the maximum yield of quercetin 8-C-glucoside reached 2236 mg/L with quercetin as substrate. Therefore, the method described herein for relieving the degradation of C-glycosylflavonoids may be widely used for the biosynthesis of C-glycosylflavonoids in recombinant strains.


Assuntos
Escherichia coli , Quercetina , Quercetina/metabolismo , Escherichia coli/metabolismo , Glucosídeos/metabolismo , Engenharia Metabólica , Concentração de Íons de Hidrogênio
7.
Enzyme Microb Technol ; 167: 110239, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37043891

RESUMO

Naringenin is a kind of flavonoid with many kinds of pharmacological activities, and is also a key intermediate metabolite in the flavonoid synthesis pathway. In this study, three α-rhamnosidases from Thermotoga petrophia DSM 13995 (TpeRha), Alternaria sp. L1 (AsRha), and Aspergillus mulundensis (AmRha), and three ß-glucosidases from T. thermarum DSM 5069 T (BGLI-Tt and BGLII-Tt), and A. niger NL-1 (BGL-NL) were cloned, expressed, and characterized. The Kcat/Km value of AmRha for naringin was 2.389 s-1mM-1 which was 796-fold and 26-fold of TpeRha and AsRha. The Kcat/Km value of BGL-NL for prunin was 0.946 s-1mM-1, which was about 4.4-fold and 4.6-fold of BGLI-Tt and BGLII-Tt. According to the catalytic efficiency, expression level, and reaction condition compatibility, AmRha was coupled with BGL-NL to construct a one-pot enzymatic cascade for preparing naringenin from naringin. The effects of the ratio and dosage of the enzyme, the naringin concentration, and reaction conditions on naringenin production were optimized. At a dosage of 200 U/L AmRha and 1000 U/L BGL-NL, a temperature of 50 °C and pH 5.0, 30 mM naringin was transformed into 29.3 mM naringenin for 24 h reaction with a corresponding molar conversion of 97.6%. Therefore, this study provides an efficient enzymatic cascade to meet the large-scale and low cost preparation of naringenin from naringin.


Assuntos
Flavanonas , beta-Glucosidase , beta-Glucosidase/metabolismo , Hidrólise , Flavanonas/química , Flavonoides , Biotransformação
8.
Appl Microbiol Biotechnol ; 107(9): 2831-2842, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36930276

RESUMO

Baicalein-7-O-glucoside and baicalein-7-O-rhamnoside have been proven to possess many pharmacological activities and are potential candidate drug leads and herb supplements. However, their further development is largely limited due to low content in host plants. Few studies reported that both bioactive plant components are prepared through the bioconversion of baicalein that is considered as the common biosynthetic precursor of both compounds. Herein, we constructed a series of the engineered whole-cell bioconversion systems in which the deletion of competitive genes and the introduction of exogenous UDP-glucose supply pathway, glucosyltransferase, rhamnosyltransferase, and the UDP-rhamnose synthesis pathway are made. Using these engineered strains, the precursor baicalein is able to be transformed into baicalein-7-O-glucoside and baicalein-7-O-rhamnoside, with high-titer production, respectively. The further optimization of fermentation conditions led to the final production of 568.8 mg/L and 877.0 mg/L for baicalein-7-O-glucoside and baicalein-7-O-rhamnoside, respectively. To the best of our knowledge, it is the highest production in preparation of baicalein-7-O-glucoside from baicalein so far, while the preparation of baicalein-7-O-rhamnoside is the first reported via bioconversion approach. Our study provides a reference for the industrial production of high-value products baicalein-7-O-glucoside and baicalein-7-O-rhamnoside using engineered E. coli. KEY POINTS: • Integrated design for improving the intracellular UDP-glucose pool • High production of rare baicalein glycosides in the engineered E. coli • Baicalein-7-O-glucoside and baicalein-7-O-rhamnoside.


Assuntos
Escherichia coli , Glicosídeos , Escherichia coli/genética , Escherichia coli/metabolismo , Glicosídeos/metabolismo , Uridina Difosfato Glucose/metabolismo , Glucose/metabolismo , Flavonoides/metabolismo
9.
Bioprocess Biosyst Eng ; 46(5): 735-745, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36932217

RESUMO

Oroxylin A and negletein are flavonoid compounds existing in plants, with excellent pharmacological activities such as anti-inflammatory, anti-viropexis, and anti-cancer. Nevertheless, the natural abundance of these compounds in plants is extremely low. Here, a biotransformation pathway was developed in engineered strains to synthesize oroxylin A and negletein from baicalin by using the crude extract of Scutellaria baicalensis as the substrate. Briefly, the precursor baicalin in this crude extract was hydrolyzed by a ß-glucuronidase to form the intermediate baicalein, then O-methyltransferases utilize this intermediate to synthesize oroxylin A and negletein. Through screening strains and carbon sources, regulating intercellular S-adenosyl L-methionine synthesis, and optimizing culture conditions, the titers of the target products increased gradually, with 188.0 mg/L for oroxylin A and 222.7 mg/L for negletein finally. The study illustrates a convenient method to synthesize oroxylin A and negletein from a low-cost substrate, paving the way for the mass acquisition and further bioactivities development and utilization of these rare and high-value compounds.


Assuntos
Escherichia coli , Flavanonas , Escherichia coli/genética , Escherichia coli/metabolismo , Flavonoides/metabolismo , Flavanonas/química , Biotransformação
10.
Bioorg Chem ; 132: 106364, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36706530

RESUMO

Among the flavonoids of epimedium, epimedin B, epimedin C, and icariin are considered to be representative components and their structures are quite similar. Besides sharing the same backbone, the main difference is the sugar groups attached at the positions of C-3 and C-7. Despite their structural similarities, their potencies differ significantly, and only icariin is currently included in the Chinese Pharmacopoeia as a quality marker (Q-marker) for epimedium flavonoids. Furthermore, icariin has the functions of anti-aging, anti-inflammation, antioxidation, anti-osteoporosis, and ameliorating fibrosis. We used bioinformatics to look for the GH43 family ß-xylosidase genes BbXyl from Bifidobacterium breve K-110, which has a length of 1347 bp and codes for 448 amino acids. This will allow us to convert epimedin B and epimedin C into icariin in a specific way. The expression level of recombinant BbXyl in TB medium containing 1 % inulin as carbon source, with an inducer concentration of 0.05 mmol/L and a temperature of 28 °C, was 86.4 U/mL. Previous studies found that the α-l-rhamnosidase BtRha could convert epoetin C to produce icariin, so we combined BbXyl and BtRha to catalyze the conversion of epimedium total flavonoids in vitro and in vivo to obtain the product icariin. Under optimal conditions, in vitro hydrolysis of 5 g/L of total flavonoids of epimedium eventually yielded a concentration of icariin of 678.1 µmol/L. To explore the conversion of total flavonoids of epimedium in vivo. Under the optimal conditions, the yield of icariin reached 97.27 µmol/L when the total flavonoid concentration of epimedium was 1 g/L. This study is the first to screen xylosidases for the targeted conversion of epimedin B to produce icariin, and the first to report that epimedin B and epimedin C in the raw epimedium flavonoids can convert efficiently to icariin by a collaborative of ß-xylosidase and α-l-rhamnosidase.


Assuntos
Bifidobacterium breve , Epimedium , Xilosidases , Epimedium/química , Bifidobacterium breve/metabolismo , Flavonoides/química , Xilosidases/genética , Xilosidases/metabolismo , Biotransformação
11.
Enzyme Microb Technol ; 163: 110154, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36395620

RESUMO

The prenylation of flavonoids is a main type of structural modification and can endow flavonoids with greater bioactivity and bioavailability. A soluble prenyltransferase (NgFPT) gene from Nocardiopsis gilva was cloned, expressed and characterized in Escherichia coli. The optimal activity of NgFPT was at pH 7.5 and 30 °C. The activity of NgFPT was significantly enhanced by Ca2+, Al3+, and DMSO. NgFPT showed high selectivity to prenylate flavanones at 3'-C to generate 3'-C-prenyl-flavanones. The Kcat and Km of recombinant NgFPT for naringenin were 0.001 s-1 and 0.045 mM, respectively. Then, recombinant strains were reconstructed by introducing NgFPT gene and the isopentenol utilization pathway. Escherichia coli hosts and fusion tags were screened to improve the yield of 3'-C-prenyl-naringenin in vivo, resulting in maximal 3'-C-prenyl-naringenin production at 3.5 mg/L. By optimizing biotransformation conditions and adopting the resting cell bioconversion, maximum 3'-C-prenyl-naringenin production reached 10.3 mg/L with a specific productivity of 0.21 mg/L/h after 48 h incubation. Thus, the article provides a regiospecific soluble prenyltransferase and a method for the production of 3'-C-prenyl-naringenin by metabolic engineering.


Assuntos
Dimetilaliltranstransferase , Flavanonas , Dimetilaliltranstransferase/genética , Dimetilaliltranstransferase/metabolismo , Prenilação , Flavanonas/química , Flavonoides/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
12.
Appl Biochem Biotechnol ; 195(2): 933-946, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36242726

RESUMO

In this study, we studied the biochemical characterization of flavone synthase I from Daucus carota (DcFNS I) and applied it with flavonoid 6-hydroxylase from Scutellaria baicalensis (SbCYP) to convert flavanones to flavones. The recombinant DcFNS I was expressed in the form of the glutathione-S-transferase fusion protein. Rather than taxifolin, naringenin, pinocembrin, and eriodictyol were accepted as substrates. The optimal temperature and pH for reaction in vitro were 35 °C and 7.5, respectively, and 2-oxoglutarate was essential in the assay system. Co2+, Cu2+, Mn2+, Ni2+, and Zn2+ were not substitutes for Fe2+. EDTA and pyruvic acid inhibited the activity, except for Fe3+. Kinetic analysis revealed that the Vmax and kcat values of the recombinant DcFNS I against naringenin were 0.183 nmol mg-1 s-1 and 0.0121 s-1, and 0.175 nmol mg-1 s-1 and 0.0116 s-1 against pinocembrin. However, the recombinant DcFNS I had a higher affinity for naringenin than pinocembrin, with kM values for each of 0.076 mM and 0.174 mM respectively. Thus, it catalyzed naringenin more efficiently than pinocembrin. Subsequently, using an Escherichia coli and Saccharomyces cerevisiae co-culture system, we successfully converted naringenin and pinocembrin to scutellarein and baicalein respectively. In a synthetic complete medium, the titers of scutellarein and baicalein reached 5.63 mg/L and 0.78 mg/L from 200 mg/L precursors.


Assuntos
Daucus carota , Flavanonas , Flavonas , Daucus carota/metabolismo , Cinética , Flavonoides
13.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36361694

RESUMO

Dimethylallyl diphosphate (DMAPP) is a key intermediate metabolite in the synthesis of isoprenoids and is also the prenyl donor for biosynthesizing prenylated flavonoids. However, it is difficult to prepare DMAPP via chemical and enzymatic methods. In this study, three promiscuous kinases from Shigella flexneri (SfPK), Escherichia coli (EcPK), and Saccharomyces cerevisiae (ScPK) and three isopentenyl phosphate kinases from Methanolobus tindarius (MtIPK), Methanothermobacter thermautotrophicus str. Delta H (MthIPK), and Arabidopsis thaliana (AtIPK) were cloned and expressed in Escherichia coli. The enzymatic properties of recombinant enzymes were determined. The Kcat/Km value of SfPK for DMA was 6875 s-1 M-1, which was significantly higher than those of EcPK and ScPK. The Kcat/Km value of MtIPK for DMAP was 402.9 s-1 M-1, which was ~400% of that of MthIPK. SfPK was stable at pH 7.0-9.5 and had a 1 h half-life at 65 °C. MtIPK was stable at pH 6.0-8.5 and had a 1 h half-life at 50 °C. The stability of SfPK and MtIPK was better than that of the other enzymes. Thus, SfPK and MtIPK were chosen to develop a one-pot enzymatic cascade for producing DMAPP from DMA because of their catalytic efficiency and stability. The optimal ratio between SfPK and MtIPK was 1:8. The optimal pH and temperature for the one-pot enzymatic cascade were 7.0 and 35 °C, respectively. The optimal concentrations of ATP and DMA were 10 and 80 mM, respectively. Finally, maximum DMAPP production reached 1.23 mM at 1 h under optimal conditions. Therefore, the enzymatic method described herein for the biosynthesis of DMAPP from DMA can be widely used for the synthesis of isoprenoids and prenylated flavonoids.


Assuntos
Hemiterpenos , Fosfatos , Fosfatos/metabolismo , Escherichia coli/metabolismo , Organofosfatos/metabolismo , Terpenos/metabolismo , Flavonoides/metabolismo
14.
Biotechnol Biofuels Bioprod ; 15(1): 129, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36434691

RESUMO

BACKGROUND: C-glycosylated flavonoids are a main type of structural modification and can endow flavonoids with greater stability, bioactivity, and bioavailability. Although some C-glycosylated flavonoids have been biosynthesized in vivo or vitro, only a few C-glycosylflavonols have been prepared by these methods. RESULTS: In this study, several uridine 5'-diphosphate (UDP)-glucose biosynthesis pathways and Escherichia coli hosts were screened to reconstruct recombinant strains for producing the novel C-glycosylflavonols kaempferol 8-C-glucoside and quercetin 8-C-glucoside. To increase C-glycosylflavonol production, the timing of flavonol addition was adjusted, and glycerol was added to avoid degradation of C-glycosylflavonols. By using resting cell bioconversion, the highest kaempferol 8-C-glucoside and quercetin 8-C-glucoside production reached 16.6 g/L and 12.5 g/L, respectively. Then, ultrasound-assisted adsorption/desorption was used to prepare C-glycosylflavonols by using macroporous resins. Through screening macroporous resins and optimizing the adsorption/desorption conditions, the highest adsorption capacity and desorption capacity for kaempferol 8-C-glucoside on HPD100 reached 28.57 mg/g and 24.15 mg/g, respectively. Finally, kaempferol 8-C-glucoside (15.4 g) with a yield of 93% and quercetin 8-C-glucoside (11.3 g) with a yield of 91% were obtained from 1 L of fermentation broth. CONCLUSIONS: Kaempferol 8-C-glucoside and quercetin 8-C-glucoside are novel C-glycosylflavonols, which have not been extracted from plants. This study provides an efficient method for the preparation and biocatalytic synthesis of kaempferol 8-C-glucoside and quercetin 8-C-glucoside by metabolic engineering of Escherichia coli.

15.
Enzyme Microb Technol ; 160: 110101, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35872507

RESUMO

C-glycosylated flavonoids are important structural derivatives of flavonoids and have a variety of physiological activities. Flavone synthase is a key enzyme for producing C-glycosylated flavonoids. In this study, three flavone synthase genes were cloned, overexpressed and characterized in E. coli. By analyzing the enzymatic properties of the enzymes, Aethusa cynapium flavone synthase (AcFNS) was better than Apium graveolens flavone synthase (AgFNS) and Petroselinum crispum flavone synthase (PcFNS) in terms of catalytic ability, organic solvent tolerance and stability. Then, a one-pot enzymatic cascade was developed to synthesize vitexin from naringenin by using AcFNS, C-glycosyltransferase (TcCGT) from Trollius chinensis, and sucrose synthase (GmSUS) from Glycine max. The effects of enzyme ratios, substrate concentrations, cofactors, and reaction conditions on vitexin production were determined. The highest vitexin production reached 935.6 mg/L with a corresponding molar conversion of 78.7 % for (2 S)-naringenin. Thus, this is the first report of a one-pot enzymatic cascade for vitexin production from naringenin in vitro.


Assuntos
Escherichia coli , Flavonas , Apigenina , Escherichia coli/genética , Flavanonas , Flavonas/química , Flavonoides
16.
Appl Biochem Biotechnol ; 194(12): 5977-5991, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35852757

RESUMO

Pseudoionone is a valuable intermediate for the flavor industry. However, few attempts have been made to synthesize pseudoionone using biotechnology. In this work, an Escherichia coli strain harboring both the isopentenol utilization pathway (IUP) and mevalonate (MVA) pathway was engineered for the production of the pseudoionone precursor lycopene, which increased the titer of lycopene to approximately 20-fold the yield obtained by the original MEP pathway. Subsequently, the crucial limiting step of carotenoid cleavage dioxygenases (CCDs) was evaluated and optimized. The most effective upstream module for pseudoionone synthesis in E. coli was determined to be MnCCD1 from Morus notabilis without a GST-tag and under the control of the tac promoter. Finally, the highest pseudoionone production achieved 20.61 mg/L under the optimum fermentation conditions in a shake flask. This study provided an efficient approach for pseudoionone production and advanced our understanding of the characteristics of the CCD family for the biosynthesis of aroma compounds.


Assuntos
Dioxigenases , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Licopeno/metabolismo , Ácido Mevalônico/metabolismo , Carotenoides/metabolismo , Engenharia Metabólica
17.
Enzyme Microb Technol ; 158: 110040, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35462273

RESUMO

The α-L-rhamnosidase BtRha from Bacteroides thetaiotao VPI-5482 is a specific enzyme that selectively hydrolyzes the α-1,2 glycosidic bond between rhamnose and rhamnose, allowing the bioconversion of epimedin C to icariin. In this study, BtRha was molecularly modified using B-factor-saturation mutagenesis strategy and the introduction of disulfide bonds, resulting in a mutant with significantly improved catalytic efficiency, S592C, and two thermally stable mutants, E39W and E39W-S592C. The results showed that the half-lives of E39W and E39W-S592C at 55 °C were 10.4 and 9.4-fold higher, respectively, than that of the original enzyme, The mutant S592C showed a 63.3% reduction in Km value and a 163.6% increase in catalytic efficiency (kcat/Km value), which improved the ability to hydrolyze epimedin C to icariin effectively. In addition, high-level expression of α-L-rhamnosidase mutant S592C was established. With 0.1 mM IPTG as an inducer, induction temperature of 32 °C, induction pH of 7.0 and induction OD600 of 50, the maximum activity of mutant S592C reached 182.0 U/mL in terrific broth medium after 22 h. This is the highest enzyme activity of α-L-rhamnosidase which can convert epimedin C to icariin to date. All the results provide a specific and cost-effective α-L-rhamnosidase mutant, which will raise its potential interest for the food and pharmaceutical applications.


Assuntos
Bacteroides thetaiotaomicron , Bacteroides thetaiotaomicron/genética , Glicosídeo Hidrolases/metabolismo , Glicosídeos , Concentração de Íons de Hidrogênio , Ramnose
18.
Bioorg Chem ; 121: 105690, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35189441

RESUMO

Baohuoside I, a minor flavonoid component of Herba Epimedii, has better bioactivities than its precursor compound icariin. In this work, we have fused the linker (4LP) to thermostable ß-glucosidase (Tpebgl3) and successfully prepared the immobilized enzyme (4LP-Tpebgl3@Na-Y) to produce baohuoside I from icariin. The activity recovery and maximum load of 4LP-Tpebgl3@Na-Y were 95.4% and 50.3 mg/g, respectively. Moreover, it exhibited four-fold improved adsorption selectivity (80.5%) with respect to native enzyme after immobilization. The maximum activity of 4LP-Tpebgl3@Na-Y was exhibited at 85 °C, pH 5.0, and it retained>80% of its initial activity after incubation at 75 °C for 2 h . It showed enhanced tolerance of organic solvent and glucose as compared to free enzymes. Kcat/Km value for 4LP-Tpebgl3@Na-Y was 1616.0 s-1•mM-1, which was 61.0% higher than that of free enzyme. Under suitable conditions (75 °C, pH 5.0, 0.1 U/mL enzyme and 120 min), 2000 mg/L icariin was transformed into baohuoside I with a molar conversion of 97.6%. 4LP-Tpebgl3@Na-Y retained 85.2% of its original activity after 10 cycles of reuse and the 768.8 mg/L/h total productivity of baohuoside I was obtained. This is the first research on one-step purification and immobilization of thermostable ß-glucosidase based on the linker and its application in the efficient production of baohuoside I from icariin.


Assuntos
Zeolitas , beta-Glucosidase , Enzimas Imobilizadas/química , Flavonoides/química , beta-Glucosidase/química
19.
Chem Biodivers ; 19(1): e202100694, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34780126

RESUMO

Natural ß-ionone, a high-value flavoring agent, has been widely applied in the food, cosmetics, and perfume industry. However, attempts to overproduce ß-ionone in microorganisms have been limited by the efficiency of carotenoid cleavage dioxygenases (CCDs), which catalyzes ß-carotene in the biosynthesis pathway. In order to obtain CCD genes responsible for the specific cleavage of carotenoids generating ß-ionone, a novel carotenoid cleavage dioxygenase 1 from Helianthus annuus was cloned and overexpressed in Escherichia coli BL21(DE3). The recombinant CCD was able to cleave a variety of carotenoids at the 9, 10 (9', 10') sites to produce C13 products in vitro, including ß-ionone, pseudoionone, 3-hydroxy-4-oxo-ß-ionone, 3-hydroxy-ß-ionone, and 3-hydroxy-α-ionone, which vary depending on the carotenoid substrates. In comparison with lycopene and zeaxanthin, HaCCD1 also showed the high specificity for ß-carotene to cleave the 9, 10 (9', 10') double bond to produce ß-ionone in E. coli accumulating carotenoids. Finally, the expression of HaCCD1 in E. coli was optimized, and biochemical characterizations were further clarified. The optimal activity of HaCCD1 was at pH 8.8 and 50 °C. The Vmax for ß-apo-8'-carotenal was 10.14 U/mg, while the Km was 0.32 mM. Collectively, our study provides a valuable enzyme for the synthesis of natural ß-ionone by biotransformation and synthetic biology platform.


Assuntos
Carotenoides/metabolismo , Dioxigenases/metabolismo , Helianthus/enzimologia , Carotenoides/química , Clonagem Molecular , Dioxigenases/genética , Escherichia coli/metabolismo , Cinética , Norisoprenoides/química , Norisoprenoides/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Especificidade por Substrato , beta Caroteno/química , beta Caroteno/metabolismo
20.
Chem Biodivers ; 19(2): e202100735, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34821468

RESUMO

Synthesis of ß-ionone in microbial cell factories is limited by the efficiency of carotenoid cleavage dioxygenases (CCDs). To obtain genes responsible for specific cleavage of carotenoids generating ß-ionone, a novel carotenoid cleavage dioxygenase 1 from Morus notabilis was cloned and overexpressed in Escherichia coli. The MnCCD1 protein was able to cleave a variety of carotenoids at the positions 9, 10 (9', 10') to produce ß-ionone, 3-hydroxy-4-oxo-ß-ionone, 3-hydroxy-ß-ionone, and 3-hydroxy-α-ionone in vitro. MnCCD1 could also cleave lycopene and ß-carotene at the 9, 10 (9', 10') bind bond to produce pseudoionone and ß-ionone, respectively, in E. coli accumulating carotenoids. The enzyme activity of MnCCD1 was reached 2.98 U/mL at optimized conditions (temperature 28 °C, IPTG 0.1 mM, induction time 24 h). The biochemical characterization of MnCCD1 revealed the optimal activities were at pH 8.4 and 35 °C. The addition of 10 % ethanol could increase enzyme activity at above 15 %. However, an obvious decline was observed on enzyme activity as the concentration of Fe2+ increased (0-1 mM). The Vmax for ß-apo-8'-carotenal was 72.5 U/mg, while the Km was 0.83 mM. The results provide a foundation for developing the application of carotenoid cleavage dioxygenases as biocatalysis and synthetic biology platforms to produce volatile aroma components from carotenoids.


Assuntos
Dioxigenases , Morus , Dioxigenases/química , Dioxigenases/genética , Dioxigenases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Morus/metabolismo , beta Caroteno/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...